Structural engineering dates back to 2700 B.C.E. when the step pyramid for Pharaoh Djoser was built by Imhotep, the first engineer in history known by name. Pyramids were the most common major structures built by ancient civilizations because the structural form of a pyramid is inherently stable and can be almost infinitely scaled (as opposed to most other structural forms, which cannot be linearly increased in size in proportion to increased loads).However, it is important to note that the structural stability of the pyramid is not primarily a result of its shape. The integrity of the pyramid is intact as long as each of the stones is able to support the weight of the stone above it. The limestone blocks were taken from a quarry near the build site. Since the compressive strength of limestone is anywhere from 30 to 250 MPa (MPa = Pa * 10^6), the blocks will not fail under compression.Therefore the structural strength of the pyramid stems from the material properties of the stones from which it was built rather than the pyramid’s geometry.Throughout ancient and medieval history most architectural design and construction was carried out by artisans, such as stone masons and carpenters, rising to the role of master builder. No theory of structures existed, and understanding of how structures stood up was extremely limited, and based almost entirely on empirical evidence of ‘what had worked before’. Knowledge was retained by guilds and seldom supplanted by advances. Structures were repetitive, and increases in scale were incremental.
No record exists of the first calculations of the strength of structural members or the behavior of structural material, but the profession of structural engineer only really took shape with the Industrial Revolution and the re-invention of concrete (see History of Concrete). The physical sciences underlying structural engineering began to be understood in the Renaissance and have since developed into computer-based applications pioneered in the 1970s.
Structural engineering is a field of engineering dealing with the analysis and design of structures that support or resist loads.Structural engineers are most commonly involved in the design of buildings and large non-building structures but they can also be involved in the design of machinery, medical equipment, vehicles or any item where structural integrity affects the item’s function or safety. Structural engineers must ensure their designs satisfy given design criteria, predicated on safety (i.e. structures must not collapse without due warning) or serviceability and performance (i.e. building sway must not cause discomfort to the occupants).
Structural engineering theory is based upon applied physical laws and empirical knowledge of the structural performance of different materials and geometries. Structural engineering design utilizes a number of simple structural elements to build complex structural systems. Structural engineers are responsible for making creative and efficient use of funds, structural elements and materials to achieve these goals.
Leave a comment
You must login or register to add a new comment.